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Abstract theory by an order of magnitude. This technique
is labeled the Generalized Wave Envelope Concept.

A finite difference formulation is presented Next, this concept is applied to a duct with vari-
for sound propagation in a rectangular two-dimen- able axial impedance for a plane wave input. In
sional duct without steady flow. Before the dif- addition, the effect of stepped noise source pro-
ference equations are formulated, the governing files on the attenuation of uniform impedance
Helmholtz equation is first transformed to a form liners is investigated.
whose solution tends not to oscillate along the
length of the duct. This transformation reduces List of Symbols
the required number of grid points by an order of
magnitude. Example solutions indicate that stepped A coefficient matrix
noise source profiles have much higher attenuation
than plane waves in a uniform impedance liner. c velocity of sound

Also, multiple stepped impedance liners are shown AdB decrease in decibels
to have higher attenuation than uniform ducts if
the impedances are chosen properly. For optimum

noise reduction with axial variations in impedance, F column vector
the numerical analysis indicates that for a plane f frequency
wave input the resistance should be near zero at

the entrance of a suppressor duct, while the react- H duct height
ance should be near the optimum value associated
with the least-attenuated mode in a uniform duct. I dimensionless intensity

A close-packed array of quarter wave tubes tuned i N-
to the proper impedance may approximate this opti-
mum condition in the entrance region of the liner.

The low resistance entrance region of a segmented m total number of grid rows (points in y-direc-
liner redistributes the acoustic energy nearer to tion)
the wall where it can be more effectively absorbed.

.. . . n total number of grid columns (points in x-di-

Introduction rection)

P dimensionless pressure, P(x,y), Eq. (1)
In engine ducts which have variations in axial

impedance, area, or flow, the finite difference p dimensionless pressure, p(x,y), Eq. (7)

approach is an attractive alternate to the conven- 7 dimensionless column pressure vector
tional analytical techniques currently used in

noise propagation analysis. In Refs. 1 to 3, the

conventional finite difference theory has been x dimensionless axial coordinate
applied to the problem of sound propagation in

two-dimensional straight hard- and soft-wall ducts

with and without steady flow. In Ref. 4, the dif- y dimensionless transverse coordinate
ference technique was applied to the variable area

case. In all the above, the continuous acoustic Ay transverse grid spacing

field is lumped into a series of grid points at Z impedance
which the acoustic pressure and velocity are de-

termined (as in Fig. 1). For long ducts and high " dimensionless specific acoustic impedance

frequency sound propagation, large computer stor- 1 dimensionless frequency, Eq. (2)
age is required. To eliminate this storage re- +
quirement, a wave envelope concept was developed(

5
) f wave envelope frequency

which greatly reduced the number of grid points \ pressure wavelength
necessary to solve a problem. However, under cer- + effective wavelength

tain conditions, the author indicated in Ref. 5

that the transformation was not appropriate or Subscripts

advantageous. This paper presents a generalization

which removes the limitations of the earlier i,j axial and transverse indexes, see Fig. 1

theory. Superscripts

Herein, a finite difference technique is for- (1) real part

mulated for sound propagation in a rectangular (2) imaginary part
two-dimensional duct without steady flow. First,

the governing Helmholtz equation is transformed Governing Equations
into a form which reduces the required number of

grid points in the conventional finite difference The governing equation describing the steady
state propagation of sound is the classic Helmholtz

tAerospace research engineer, V/STOL & noise division. equation (dimensionless form)



a2p a2p An example will be presented shortly to illustrate
2+ + (2r)2 P 0 (1) how Eq. (7) can remove the oscillatory nature of
x2  y2 the pressure.

where the dimensionless frequency n is given as For plane waves propagating in hard wall ducts,

H+  is known to be c/f. For this case Eq. (7)
S(2) reduces to

a2 p + L2Z P M 2 = 0 (8)These and all other symbols used in the report are 2 2 ax
defined in the List of Symbols. ax ay

For a hard wall duct infinite in extent, the In soft wall ducts, X+ is not known precisely;
one-dimensional solution of Eq. (1) for pressure therefore, the problem of picking A+ (or n+) to
yields(1) remove the pressure oscillations must be considered.

In Ref. 5, Asoft was assumed equal to hard*
P . p(l) + ip(2) . cos( 2frlx) - i sin(2rnx) (3) Later in this section, we will show how the assump-

tion works.

The analytical and finite difference solutions
for the acoustic pressure of an example case are For convenience, the hard wall case, for which
presented in Fig. 2. To accurately describe the the correct answer is known, will now be used to
spatial pressure profiles in Fig. 2, the required investigate the sensitivity of an incorrect guess on

number of grid points in the x-direction is the final answer. To illustrate how Eq. (7) or (8)
removes the oscillatory nature of the pressure,

12 n (4) consider again the hard wall duct problem of Fig. 2.
n 12 (4) The exact analytical solution of Eq. (7) for p

in which the assumed fl+ term is included is
For the example shown in Fig. 2, 

the dimensionless

frequency n equals 1 and (L/H) is 1; thus, 12 p = p(l) + ip( 2) = cos2Tr(n-r1+)x - isin27(n-n+) x (9)
points are necessary.

Of course, the product of Eq. (9) with e-i27n+x
Next, consider the example case of a two- always gives the exact pressure variation P as

dimensional soft-wall duct with n = 1 and defined by Eq. (3). That is, every p(x) obtained
L/H = 3. A typical P(1) pressure profile in the for any assumed value of n+ will yield the cor-
suppressor duct is shown in Fig. 3 by the heavy rect value of P(x) when substituted back into
solid line, while the dashed line represents the Eq. (3).
envelope of the pressure wave amplitude. From
Eq. (4), the number of grid points n should be The analytical solutions for p(l) from Eq. (9)
36. However, if the Helmholtz Eq. (1) could be for various assumed values of n+  or In-n+I are
transformed so that it would describe the envelope shown in Fig. 4. For f+ equals 0, Eq. (7) reduces
(dashed line) of the pressure, the grid points to the Helmholtz equation, and P() = p(l), see
could be reduced to 5 or less, for-this particular dotted line (cosine shape) in Fig. 4. For this
case as shown in Fig. 3. Since the total number particular problem twelve grid points would be re-
of grid points used is the product of the points in quired to adequately describe this pressure profile
the y-direction with n points in the x-direction, in a difference analysis. However, if n+ is as-
as shown in Fig. 1, this represents a tremendous sumed to have a value of n+ between 0.7 and 1.3
savings in computer storage and operating time. such that In-n+I<0.3, the exact analytical solution
The task of transforming the Helmholtz equation to for p(l) would require as few as 3 grid points in
the wave envelope equation is now considered, the difference analysis. The curves for n+  be-

tween 1.0 and 1.3 are mirrow image to those between
Generalized Wave Envelope Concept 0.7 and 1.0 and therefore are not shown. If n+ is

assumed to be equal to n, the curve for p(1) is
To remove some (if not all) of the axially the straight line, q = 1 or I-rnn+ = 0. This

oscillatory part of the wave pressure profile, line represents the envelope of the pressure oscil-
assume lation. If, for example, it is assumed that

+ = .8, the exact solution in Fig. 4 does not rep-

P(x,y) = p(x,y) e-i2 nrr+x (5) resent the true envelope of the pressure oscilla-
tion; it is still a gently varying function that

where P represents the pressure of the oscilla- requires only a few finite difference grid points

ting curve in Fig. 3 and p represents the pres- to accurately describe its shape. Thus, it is only
sure of the wave envelope shown by the dotted line necessary to pick a value of 1+ (or l+) in the

in Fig. 3, and where vicinity of the true value of X+ to get tremen-
dous saving in the grid points required for a finite

+  (6) difference analysis. In so doing the differential
Helmholtz equation is transformed to a new form,

with X+  representing the effective axial wave- Eq. (7), which requires fewer grid points in its

length of the pressure in the duct (Fig. 3). Sub- solution.

stituting Eq. (5) into the Helmholtz equation (1)
yields a new governing differenital equation called As another example, to show how to pick X+,
the Generalized Wave Envelope Equation consider the problem of predicting the attenuation

in a soft wall duct, where n+ is an unknown.
SCalculations for the attenuation were made in Ref.

L2 p - 1 x7 + (2nr) 2 (n2 - Tl+2 )p = 0 (7) 5 using the assumption that n+  equals n. Fig-
ax ay2
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ure 5 from Ref. 5 shows a comparison of the ana- p(2) = 0 (15)

lytical and wave envelope calculation for the

optimum soft-wall duct attenuation for various Axial Acoustic Power

n and L/H values.
The sound power which leaves a duct and

Excellent agreement between the analytical reaches the far field is related to the axial in-

and numerical calculations were obtained for the tensity. As was shown in Ref. 5, the axial inten-

two-dimensional duct example in Ref. 5. For the sity can be expressed in terms of the transformed

n = 5 and L/H = 6 case in Fig. 5, the conven- pressure as
tional finite difference theory required 3600 grid

points while the wave envelope difference theory + [p(1)2 + p(2)2
required only 100 grid points. Thus, a savings I
of 3500 grid points over the conventional differ-

ence theory is obtained. At lower n and L/H, 1 ((2)2)P) - (1) (16)

the savings was smaller. For this type of cal- 2n p\ .x \3x j

culation for any assumed value of n+, it is nec-

essary to check for a converged answer by increas- It should be noted that the calculated value of

ing the number of grid points (m,n) in both x intensity will be independent of the assumed value

and y direction, as was done in Ref. 5. of n
+ . 

The total dimensionless acoustic power is

the integral of the intensity across the test sec-

Boundary Conditions tion

In the transverse direction, the acoustic im- Ex  J I(x,y)dy (17)

pedance at the wall as shown in Fig. 1 is defined

as the ratio of pressure to the transverse veloc- By definition the decrease, in decibels, of

ity. In dimensionless form the impedance ratio By d efinition the decreasex. can be written as
can be expressed as

( 5)  the acoustic power from 0 to x can be written as
can be expressed as(

5 )

AdB = 10 log1 0  (18)
C = -12 p (10)

pc (aP/ay) Difference Equations

The continuous system is now reduced to an
Substituting the expression for the transformed The continuous system is now reduced to a

pressure, Eq. (5), into Eq. (10) yields equivalent lumped-parameter system by means of a

finite difference approximation. Instead of a

continuous solution for the pressure, the pressure

2. -ia (11) is determined at the isolated grid points shown

ay C in Fig. 1. The difference equations to follow are

which is the same form as Eq. (10) since the 
r1+ generated using Green's Theorem.

parameter does not enter into the impedance condi- Central
tion.

The generalized wave envelope Eq. (7) written
The exit condition to be presented now allows in finite difference form for the i,j point in

the numerical solution to be compared to the ana-

lytical results for wave propagation in an infin- Fig. 1 is

itely long duct. The entrance region of length L /Ix\ 2

in an infinitely long duct with uniform impedance ) Pi,- + + i2Axn+ Pi-1,j

will not have reflections at any position in the

duct. The wave propagation in the entrance region 2 (2x)22 2

of the infinite duct can be represented with a fin- - 2 1+ _1A - (2rrAx)2 (2  ij

ite length of duct L by choosing the exit imped-

ance at L so that no reflections occur. Conse-

quently, if the exit condition in the numerical +[ -12ix

analysis is chosen to eliminate reflections at the +
1  

i2 TAx Pi+l,j

exit of the duct, the numerical and analytical re-

sults should be in close agreement. The exit con- ( 2 0 (19)
dition developed in Ref. 5 to meet this condition + y) i,+ = 0 (19)

was shown to be
Wall

= -1i2nP (12) The difference equation which applies along

the upper boundary in Fig. 1 is

Substituting the expression for the transformed

pressure, Eq. (5), into Eq. (12) yieldsAxJ2 + l + 12,,A+] -

- = -i2r(n-n+)p (13)
x /(Ax\

2  
(27Ax)

2
(r

2 - q+ 2
) 12Ax2l

For the entrance pressure profile, the trans- kY) 2

formed pressure is assumed to be 1 - i2TAxri 0 (20)

p(l) . 1 (14)
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A similar equation applies along the lower wall. { } [] =- [A] (25)

Exit where {A} is the known coefficient matrix, [f]
is the unknown pressure vector, and [F] is the

The difference equation which applies along known column vector containing the various initial

the exit plane in Fig. 1 is conditions. The matrix is complex. At the present

time, the most efficient computer routine for

solving Eq. (25) was written by D. W. Quinn(
4 ) at

1 /Ax 2  [Axi2 [ ( 2  Wright-Patterson Air Force Base, Dayton, Ohio.

2 kA) Pn,j-l + 1 + i2Axnpn-,J + Equation (25) can also be solved by subdividing the

complex matrix into four real matrices. The real

(2rrAx)
2 (n2 - q+2 ) + i27Ax( - a) matrices can be solved using standard elimination

2 techniques.

+ i2TrAx1+] Pn,j Results and Discussion

Calculations are now presented in this section

1 Ax 2  0 (21) to illustrate the use of the wave envelope concept

2 Pn,j+l 0 (21) in solving two sample problems in treated duct

attenuation: the effect of source strength radial

Corner profile; and the effect of variable axial impedance.

In the following calcualtions n+  will be assumed

The difference equation which applies at the to n. In all calculations, the fact that the

upper corner (point n,m in Fig. 1) is given by pressure profile are symmetric about the centerline

was used to reduce the required number of grid

1 (Ax\2  + points in y-direction.1 ) Pm1 + iIAx
2 ky nm-1 n-1Radial Source Profilesl (2 Ax 2(r -

S- (2 ) 2  Because of the complexities of the turbo-fan

+ \ay) 2 noise source, questions exist at the present time

Ax2  on the radial distribution of the acoustic energy
+ i2 + i2Ax (rj - n+) at the fan source. The attenuation was therefore

SAy' calculated for stepped noise source profiles of the

] form illustrated in Fig. 6. The calculation were
n,m = 0 (22) made for a liner which had been optimized assuming

a uniform source profile. The sensitivity of the

a similar equation exist for the lower corner. liner attenuation for various size of the steps was
determined at three different frequencies.

Axial Intensity
Figure 7(a), (b), and (c) illustrates the re-

In terms of the difference notation, the sults for the three cases of n = 1, 2, and 5,

axial intensity as given by Eq. (16) can be ex- and all at L/H = 1. In each of these figures, the

pressed as abscissa represents the radial position of the step

in the duct. The attenuation for a duct with a

+ +2 uniform radial profile is represented by the far

I = p p(2) 2  left ahnd portion of the curve at y = 0. As the
Lj i,JJ radial position of the step moves to the right

+ ( p(2 ) 1 towards the absorbing wall, y > 0, a greater por-
S(2) ap( - p(1) ap(2) (23) tion of the energy will be absorbed. As seen in

2n ij ax ax Fig. 7(a), for a low frequency source (ri = 1)
a modest (3 dB) increase in attenuation is seen

The total power across a particular cross section, for either profile as compared with the attenuation

as given by Eq. (17), is written in difference of the uniform profile. However, as shown in

notation as Figs. 7(b) and 7(c), for the smaller wavelength

m-1 sound sources (r = 2 and 5) the attenuation for the

my (24) stepped profiles is much larger than for the uni-

E1 2
i j 

j= + 2 1) form profiles.

Higher order modes have been shown by analysis,
By evaluating Ei at the entrance and ext in general, to have higher damping coefficients

positions, taking the log of their ratio and mul- than the lower order modes. Since such a step
tiplying by 10, as indicated in Eq. (18), the pressure profile can be considered to be composed
sound attenuation for the duct is determined. of various higher-order radial modes, and since

Matrix Solutions higher-order modes (stepped towards wall) damp
more quickly than the lower-order modes, the re-

sults seen here are in qualitative agreement with
The collection of the various difference analytical theories

(6 )

equations at each grid point forms a set of simul-

taneous equations which can be expressed in matrix In a practical problem, if the noise source

notation as profile of a turbo-fan engine is skewed with a
higher concentration of acoustic intensity closer

4



to the wall, the attenuation predicted assuming acoustic boundary layer and the results presented
a uniform source would under-perdict the measured earlier on stepped noise source profiles. In
attenuation. uniform impedance liners, an "acoustic pressure

diffusion boundary layer" is formed along the walls.
Wall Impedance Variation The acoustic pressure at the centerline of the

duct is "unaware" of the soft wall until the acous-
To eliminate the need for heavy, expensive tic diffusion boundary layer at the upper and lower

and otherwise undesirable splitter rings and also walls meet. This is illustrated by the results
to reduce the required length of wall treatment shown in Fig. 11. This phenomenon is analogous to
(cowl length), recent research is concerned with the problem of a developing laminar velocity pro-
increasing the attenuation of wall treatment in a file in the entrance region of a pipe. It takes a
fixed length of liner. One practical approach to prescribed length down the pipe before the growing
increasing the attenuation of a liner(7) is to laminar boundary layers at the walls meet in the
subdivide the liner into several different segments center of the pipe to establish the fully developed
as shown in Fig. 8. Next, to obtain higher atten- parabolic laminar flow profile. Apparently the low
uations than are possible with a uniform liner, the resistive entrance impedance induces large trans-
liner segments are jointly optimized to maximize verse movement of the acoustic energy which break
the, noise attenuation. up the "acoustic diffusion boundary layer" and

redistributes the acoustic energy towards the wall
In optimizing the stepped liners, the starting in the entrance section of the duct. The redistri-

point was the optimized uniform impedance. The bution of acoustic energy towards the wall is il-
first liner segment was then optimized while hold- lustrated for the two-stepped liner in Fig. 12,
ing the remaining segments at the uniform value. which compares the sound pressure level (SPL) for
Next, holding the first segment at its new value, the two-stepped and the uniform impedance liners.
the iteration process was continued on the remain- As seen in Fig. 12, the SPL in the initial segment
ing segments. The process was repeated for the of the duct increases in the vicinity of the wall.
whole liner until the change in the duct attenua- As was shown in the earlier section of this report
tion was less than 5%. on radial distribution effects of sound sources,

if the acoustic pressure profile is peaked nearer
Figure 9 shows the optimum attenuation deter- to the wall, the acoustic energy in the duct can

mined herein for stepped impedances of two and be more effectively absorbed. This phenomenia
three steps for a dimensionless frequency of could be called pressure redistribution. The pres-
n = 1 and a liner length-to-height ratio L/H of sure source is conditioned for better absorption
0.5. As seen in Fig. 9, the two and three stepped by the downstream liner segments. As seen in
liners have increased the attenuation by 5 and 6 dB Fig. 12, the peak SPL level which occurred at
respectively. Figure 10 shows the optimum atten- x = 0.25 is quickly lowered below the uniform SPL
uation for a two step duct at the higher dimension level at the point x = 0.375.
less frequency of n = 5. These calculations for
n = 1 and n = 5 show that the stepped impedance To fabricate a low-resistive element, large
ducts have theoretical attenuation 2.0 to 2.5 open area in the acoustic liner is required. For
times the attenuation of a uniform impedance liner the no flow case considered here, a closely packed
of the same length. The dotted part of the curve array of quarter-wave tubes might be ideal in this
shown in Fig. 10 is an numerical instability that application since these tubes can be tuned to give
results from insufficient grid points. As shown the proper reactance yet still have a very low re-
in Ref. 5, the number of grid points in y-direction sistance. However, a practical liner may have a
should be increased for increasing n. Unfortu- higher resistance than the desired optimum value.
nately, the present computer program could not In this case, the efficiency of the liner would be
accomidate the required increase in grid points. reduced. The sensitivity of the liner attenuation

to the entrance resistance is shown in Fig. 13. As
In both the two and three-stepped liners for seen in Fig. 13, the efficiency of the liner de-

l = 1 and a two stepped liner for n = 5, the creases with increasing resistance of the first
resistive component of impedance optimized near segment. Consequently, both theoretical and exper-
zero (0.01) in the first segment of the liner. As imental work is needed on the design of low-resis-
a result, the first portion of the segmented liner tance liners.
removes less acoustic energy than the uniform
liner. This can be seen in Fig. 9 by observing Combined Stepped Segments and Source Profile
that the curves for both the two and three-step
liners fall below the curve for the uniform liner Finally, suppose a stepped noise source pro-
for x less than 0.3. This is to be expected file of the form shown in Fig. 6 exits in the duct.
since there is no resistive component of impedance Such a profile might result because more noise is
to dissipate the energy in the first segment of generated at the tip of the rotor or because a
the stepped liners. centerbody channels more acoustic energy to the

vicinity of the wall. Suppose we also want to use
The reactive component of the first section a two-stepped segmented liner. For a stepped pro-

of the two and three stepped liners does not differ file which extends 30% inward from the wall, the
substantially from the optimum reactance for a optimum impedance was determined for a two stepped
uniform liner with a plane wave input, or from the duct. The results shown in Fig. 14, are compared
optimum reactance associated with the least atten- with the uniform impedance optimized for both a
uated mode in a uniform duct. step input and a plane wave input. In this example,

the resistance of the initial segment is at 0.11.
The reasons for the enhanced attenuation for This is higher than the resistance required for the

the stepped duct liner over the uniform liner can plane wave source input for a two-stepped liner.
be reduced from the work in Ref. 4 concerning the Recall that the resistance for the two-step liner
acoustic boundary layer and the results presented for a uniform plane wave input was shown to be
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0.01 in Fig. 9. Most likely, since the acoustic
pressure is already higher in the vicinity of the
wall, the optimum resistance in the first section
of the stepped duct is higher so that acoustic
energy can be immediately absorbed. Clearly, the
optimum impedance distribution will be a function
of the source noise distribution.

Recall that for a uniform duct with a plane
wave input, for n = 1 and L/H - 0.5 the atten-
uation is -4 dB, as shown in Fig. 9. Comparing
this value to the nearly -40 dB attenuation shown
in Fig. 14 for a stepped noise source profile and
a segmented liner, the combined consideration of
both source profiles and segmented liners can be
a significant in the design of an acoustic liner.

Conclusions

Because the wave envelope technique greatly
reduces the required computer storage and solution
time, the technique was conveniently applied to
the acoustic problems of skewed inlet pressure
waves and ducts with axial variations in impedance.
For both plane wave uniform noise sources and
stepped noise sources, segmented liners are shown
theoretically to increase the attenuation as com-
pared to a uniform liner by redistributing the
energy to the wall so that the acoustic energy can
be more efficiently absorbed by the liner. To
accomplish this redistribution of energy, the first
element of the segmented liner must have a value
of resistance near zero. For higher initial seg-
ment resistance, the attenuation significantly
falls below the optimum value. The optimization
of segmented impedance components and the optimum
attenuation of the liner are shown to be strong
functions of the source noise distribution.
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Figure 7. - Effect of transverse stepped source profiles on
duct attenuation for LIH = 1 and zero and 0. 3 step for
m = 14, n = 10 at the 71 and impedance values indi-
cated in each figure.
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Figure 8. - Stepped duct liner with segments of varied impedance.
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Figure 9. - Impedance optimized for an L/H = 0.5 and
= 1.
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Figure 10. - Impedances optimized for an L/H = 0.5 and
77 = 5.
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Figure 11. - Pressure amplitude fluctuations along duct at Uniform duct (optimum
optimum impedance for dimensionless frequency 7 = 1, attenuation)
dimensionless duct length L/H = 1, number of grid rows
m = 10, and number of grid columns n = 10 (ref. 5). -
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Figure 12. - Radial SPL profiles for uniform and two-step duct liners
for 77=1 and L/H=0.5 for m=5, n=10.
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